A Weak Type Inequality for Non-commutative Martingales and Applications

نویسندگان

  • NARCISSE RANDRIANANTOANINA
  • N. RANDRIANANTOANINA
چکیده

X iv :m at h/ 04 09 13 9v 1 [ m at h. FA ] 8 S ep 2 00 4 A WEAK TYPE INEQUALITY FOR NON-COMMUTATIVE MARTINGALES AND APPLICATIONS NARCISSE RANDRIANANTOANINA Abstract. We prove a weak-type (1,1) inequality for square functions of noncommutative martingales that are simultaneously bounded in L and L. More precisely, the following non-commutative analogue of a classical result of Burkholder holds: there exists an absolute constant K > 0 such that if M is a semi-finite von Neumann algebra and (Mn)n=1 is an increasing filtration of von Neumann subalgebras of M then for any given martingale x = (xn)∞n=1 that is bounded in L2(M) ∩ L1(M), adapted to (Mn)n=1, there exist two martingale difference sequences, a = (an) ∞ n=1 and b = (bn) ∞ n=1, with dxn = an + bn for every n ≥ 1, ∥

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gundy’s Decomposition for Non-commutative Martingales and Applications

We provide an analogue of Gundy’s decomposition for L1-bounded non-commutative martingales. An important difference from the classical case is that for any L1-bounded non-commutative martingale, the decomposition consists of four martingales. This is strongly related with the row/column nature of non-commutative Hardy spaces of martingales. As applications, we obtain simpler proofs of the weak ...

متن کامل

Conditioned Square Functions for Non-commutative Martingales

Abstract. We prove a weak-type (1,1) inequality involving conditioned square functions of martingales in non-commutative L-spaces associated with finite von Neumann algebras. As application, we determine the optimal orders for the best constants in the non-commutative Burkholder/Rosenthal inequalities from Ann. Probab. 31 (2003), 948-995. We also discuss BMO-norms of sums of non commuting order...

متن کامل

A noncommutative Davis’ decomposition for martingales

The theory of noncommutative martingale inequalities has been rapidly developed since the establishment of the noncommutative Burkholder-Gundy inequalities in [12]. Many of the classical martingale inequalities has been transferred to the noncommutative setting. These include, in particular, the Doob maximal inequality in [3], the Burkholder/Rosenthal inequality in [5], [8], several weak type (...

متن کامل

Weak Type Estimates Associated to Burkholder’s Martingale Inequality

Motivated by quantum probability, Junge and Xu recently extended this result to the range 1 < p < 2. In this paper we study Burkholder’s inequality for p = 1, for which the techniques (as we shall explain) must be different. Quite surprisingly, we obtain two non-equivalent estimates which play the role of the weak type (1, 1) analog of Burkholder’s inequality. As application, we obtain new prop...

متن کامل

An Inequality for P-orthogonal Sums in Non-commutative L P

We give an alternate proof of one of the inequalities proved recently for martingales (=sums of martingale differences) in a non-commutative L p-space, with 1 < p < ∞, by Q. Xu and the author. This new approach is restricted to p an even integer, but it yields a constant which is O(p) when p → ∞ and it applies to a much more general kind of sums which we call p-orthogonal. We use mainly combina...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004